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Abstract—In this paper, we propose a deterministic threshold
model for facilitating distributed intermittent swarm commu-
nication. In our framework, each agent decides autonomously
whether it will become a data mule, without a need for explicit
network consensus. Unlike existing approaches, this deterministic
model allows each agent to independently evaluate lower bounds
on the communication frequency, which can be used in decision-
making processes. The newly devised threshold model guarantees
that the optimal agent is selected to be a data mule concerning
a user-defined multi-objective function and that the disjointed
networks are connected infinitely often, over infinite time. To
demonstrate the optimally and versatility of the approach, the
algorithm is tested on multiple swarm configurations with varying
degrees of connectivity and packet frequency in the ARGoS
simulation environment.

I. INTRODUCTION

Intermittently communicative networks of robot swarms
arise when there is no constant communication between all
agents. For example, situations like this may occur when the
network breaks into spatially sparse clusters.

Traditional methods of ensuring communication over in-
termittently communicative networks find laws that govern
robot movement so that the entire network is connected
infinitely often over infinite time. Agents that are removed
from connected networks are connected infinitely back to
the network given time. This is useful in any swarms of
agents where network breaking is desired. This could be
for exploration, mining, transportation, or any system where
robots are sparsely distributed.

One of the most common ways of doing this is task
allocation which means deciding on ‘data mules’ to carry data
back and forth.

The threshold model for data mules in wireless sensor
networks is based on the idea that a data mule should only
visit a sensor node when the number of data packets generated
by the node exceeds a certain threshold. This threshold is
commonly set as a ‘maximum packet count’ that a sensor
node can store before it becomes overloaded and unable to
receive new data. Several papers propose the threshold model
for data mules in sensor networks, and the fixed threshold
value is commonly determined based on the expected number
of packets generated by the nodes. The data mule visits only
those nodes whose packet count exceeds the threshold. This
is a limiting strategy.

The decision on which data mule to send to collect data
from a particular sensor node can be made using a consensus
algorithm in wireless sensor networks that use data mules.
One approach to achieving consensus on which data mule
to send is to use a distributed consensus algorithm such as
the consensus-based bundle algorithm (CBBA). CBBA is a
decentralized algorithm that enables a group of agents to
allocate tasks among themselves based on their individual
capabilities and preferences. However, consensus algorithms
take time and computational effort to be applied.

II. PROBLEM STATEMENT

How can we create a threshold model for task allocation
where the tuning of variables is intuitive, and analysis of
communication rate is simple to carry out in a distributed way?

III. PROPOSED METHOD

A. Finding an Optimal Data Mule

If it is given that a network has to decide on a data
mule, then the decision on which robot becomes a data mule
becomes a multi-objective optimization problem.

An agent in network Ni (agent x ∈ Ni) should be chosen
to be a data mule such that it has with the least utility to the
network (denoted by ϕutility) and easiest ability to carry packets
from one network to another (denoted by ϕconnectability).

Thus, the objective becomes

Φ⃗(x) =

[
ϕutility(x)

−ϕconnectability(x)

]
(1)

If we convert this to a single-objective optimization function
to resolve the Pareto-optimal solutions through linear scalar-
ization, the problem becomes

arg min
x∈Ni

(ϕ(x))

= arg min
x∈Ni

([α β] · Φ⃗(x))

= arg min
x∈Ni

(α · ϕutility(x)− β · ϕconnectability(x))

(2)

where α and β are positive definite variables that determine
the relative weights of each objective.



B. Using Network Curiosity

This objective does not accurately model the desired deci-
sion making process. The weight assigned to ‘connectability’
should become dependant on the importance of the connec-
tivity instead of stay constant. If a network does not need
to communicate with another network with a high frequency,
ϕconnectability should be weighted less.

In order to resolve this, we introduce the idea of ‘curiosity’
(γi) of network Ni. This is a measure of the time since a
network Ni has gotten or sent data mules to or from a target
network, Nf . Curiosity is a time-varying parameter which
grows at a determined rate from the time a mule is sent or
received. The rate is linear for the purposes of this work, and
is homogeneous across a network. If the network needs to send
a mule while a low importance is placed on communication
frequency (the curiosity is low) it would be preferable to send
a data mule with the lowest utility to the network, however, if
the importance is high, it would be preferable to send an agent
which has a low cost of ‘connectability’. By this, Φ becomes

Φ⃗(x) =

[
ϕutility(x)

−γi · ϕconnectability(x)

]
(3)

and the objective becomes

ϕ(x) = (α · ϕutility(x)− β · γi · ϕconnectability(x)) (4)

In this new function, low values of γ mean that ‘connectabil-
ity’ is weighted less.

C. The Threshold Model

This is making an assumption that the network can come to
a decision on when a data mule needs to be sent in a distributed
manner easily, and then find the optimal agent to be a mule.
In order to solve both problems a threshold model is adopted.

Assumptions are made about α, β, ϕutility, γi and ϕconnectivity.
α and β are positive constants, γi is positive semi-definite
and increasing, ϕutility is positive definite and quasi-static, and
ϕconnectivity is positive-semi-definite and also quasi-static.

Given these assumptions,

ϕ̇(x) =
d

dt
(α · ϕutility(x)− β · γi · ϕconnectability(x)) = −γ̇ (5)

The objective function becomes decreasing at the same rate
as γ, and definitively positive when γi = 0.

The variables can be tuned to come to a decision on when
to send a data mule. The threshold of the network can be when

min
x∈Ni

(ϕ(x)) ≤ 0 (6)

In this case, the agent that becomes a data mule would be

x∗ = arg min
x∈Ni

(ϕ(x)) (7)

This formulation of the optimization algorithm can be
solved easily by the distributed system, as the problem can
be solved by a simple algorithm.

Algorithm 1 AgentX()
while true do

updateGamma();
if ϕ ≤ 0 then

TASK = 1;
target network = not(current network);
broadcast(RESET SIGNAL);

end if
if TASK == 1 then

goToTargetNetwork();
if checkIfNeighborsInTargetNetwork() then

TASK = 1;
current network = target network;

end if
else

performOtherTask();
if RESET SIGNAL = recieved() then

γ = 0;
broadcast(RESET SIGNAL);

end if
end if

end while

Here, the ‘reset signal’ broadcast is easy to implement, even
on a platform with a low frequency of communication between
neighbors, and ensures that no other agents will choose a data
mule task for a certain period.

D. Bounds on Period

Since the threshold itself is simple to calculate, a bound on
the period of data mule expulsion from the network can be
calculated by each agent.
ϕ(xj) for agent j is 0 at

γij =
α · ϕutility(xj)

β · ϕconnectability(xj)
(8)

where γij is the curiosity value at which agent j decides would
change tasks to become a data mule. Since there is a linear
relationship between γij and time, this is closely related to the
period, and the maximum value of γij in a network will give
the maximum period.

If the bounds on ϕconnectability(x ∈ Ni) and ϕutility(x ∈ Ni)
were known, or approximations could be accurately and easily
made, then the bounds on the period of the system could also
be known.

max(γij) =
α

β
·

max(ϕutility(x))

min(ϕconnectability(x))

min(γij) =
α

β
·

min(ϕutility(x))

max(ϕconnectability(x))

(9)

Which can be used in analyzing and making decisions on
the network.



IV. EXPERIMENTATION

A. Platform and Experiment Setup

Fig. 1. Experiment Setup in ArGoS Simulator

We plan to simulate 2 disconnected networks with 15 agents
each in ARGoS. These agents will be Khepera robots, with
their connectivity radius throttled. By assigning data-mules,
each network will try and establish temporal connectivity and
carry packets between them.

For our implementation, ϕutility is set as the flow of the agent
in it’s network. By this formulation, it is guaranteed to be
positive definite, and robots with a greater contribution to flow
in the network are exempted from being used as data-mules.

In this framework, the robots are assumed to be able to
calculate flow in a decentralized manner as a heuristic for
a robot’s importance in a network. Since the calculation of
flow is beyond the scope of this work, we have simplified the
experimental implementation by using centralized calculation
of the flow in each network, which is then injected to the
robots through Buzz loop code.

ϕconnectability is calculated as the distance from an agent to the
approximated centroid of the other network. Assumptions are
made about the location of the target network location, thus,
in our implementation, we supply each network centroid a-
priori, and the tasks of the working (non-data carrying) robots
is to rotate around their network centroid in an ellipse. This is
a rotating ellipse, so the distance of each agent from the other
netowrk, as well as their flow, fluctuate.

In our implementation, agent 0 of each network is des-
ignated as a ‘network leader’ that does not carry out this
algorithm. They carry out the default task and broadcast the
network ID such that agents understand which network they
are a part of. This network ID is cascaded through the network.
When a data-mule gets a message from a network leader of
the target network, they become a part of the network and
switch tasks.

The max and min of ϕutility are approximated using
empirical evidence as 40 and 1. These are bounds that are

overcompensated. The max and min of ϕconnectability are
found using the distances of the extrema of the ellipse.

B. Experiments and Expected Results

1) Prediction: By running this experiment multiple times
with different parameters, can we predict the average rate
of expulsion, and is the deviation from the rate high? If we
predict the bounds of the packet transfer rate in a decentralized
manner, do we find that we are within bounds?

2) Meeting in the middle: What happens if two agents meet
in the middle? We predict that they will exchange packets and
go back to their respective networks quickly, as their ‘utility’
would be low.

3) Bridges: If the rate is fast enough, will the agents form
a bridge?

V. RESULTS

A. What happens when 2 agents meet in middle of route?

The agents do not form their own network, as only the
agent leaders in the experiment send messages. The updated
hypothesis is that dynamic network creation, such that if two
agents meet in the middle they have the ability to create a new
network, will influence this behavior.

B. How do the values of α and β affect the system?

The ratio of α
β determines the connectivity and the number

of agents working as data mules at a given time.

Fig. 2. Agents acting as data mules

• Smaller value of the ratio results in agents focusing more
on transmitting data and acting as a data mule as the
connectability is weighted more in these instances.

• Larger value of the ratio results in more agents focusing
on their task.



Fig. 3. α
β

= 0.411

Fig. 4. α
β

= 0.538

Figures 3 and 4 show the trend for the value of phi over
time for the leaders of each network. The stars indicate where
agents are expelled from the network. In the experiment with
the lower ratio, more stars are present, showing a higher
frequency.

Five experiments were ran over 7000 steps. At each ex-
periment value the approximated minimum period seemed
to be a tight approximation of the actual minimum period,
while the maximum period seemed to be a significant over-
approximation.

• α
β = 0.411

– (approximated) γmin = 95, γmax = 10148
– (actual) γmin = 114, γmax = 557

• α
β = 0.7

– (approximated) γmin = 162, γmax = 17284
– (actual) γmin = 224, γmax = 945

That is because the maximum approximation is for a worst
case scenario, where the robot that is chosen is the one with
the most cost, which will not happen as long as at least one
more agent is present in the network.

C. What happens when α is too small and β is too big?

The ratio of α
β being too small results in formation of a

near bridge between the two networks.
Since the expulsion rate is so high, agents are expelled

rapidly, and end up still being connected to their network
leaders by the agents that were expelled after them even over
long distances.

Fig. 5. Bridge Formation between two networks
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